

APS Short Pulse X-ray (SPX) Design Study

SPX Scientific Goal

Generate short x-ray pulses using crab-cavity-based method.

SPX Technical Goal

Conduct R&D to demonstrate proof of concept which will lead to design and implement of a fully integrated SRF deflecting cavities system for the APS storage ring.

SPX Fundamental Parameters

Beam current 202 mA (24singlets)

Beam energy 7 GeV

Revolution frequency 271.55 kHz

RF deflecting voltage 2 MV (Initial implementation)

Two cryomodules

4 cavities/cryomodule

RF deflecting voltage 4 MV (Final implementation)

Two cryomodules

8 cavities/cryomodule

RF frequency 2815.4856 MHz

(8th harm of SR frequency (351.9357 MHz)

Technical Systems

- Cavities
- Cryomodule
- Cryogenics
- Low-level RF
- High-power RF and waveguide distribution
- Beam diagnostics
- Timing and synchronization
- Controls/Interlocks/ Machine Protection System

APS-U Timeline

APS Upgrade Expected Timeline and Milestones

SPX Timeline with Milestones

SPX Timeline with Milestones -2

R&D. What do we have to learn?

		Offline Testing				On-Line Testing
	Non-Cryo	Single bare Cavity	Single diressed Cavity	Multiple diressed Cav	LEUTLTest with beam	Storage Ring
	Tes ts	Vertica l Test Stand	Horizonta l Test Stand	Horizontal Test Stand	(Multi. Dressed cav)	Test,passive/active
Information Learned		(PHY 24" bucket dewar)	(PHY TC3)	(PHYTC3)		(Mult. dressed Cav)
Cavity resonant frequency at operating temperature		×	×	×	×	×
Cavity Q vs E at temperatures down to 2K		×	×	×	×	×
Cavity resonant freq across slow tuner range			×	×	×	×
Helium vessel performance			×	×	×	×
Check of clean assembly			×	×	×	×
Test of actual input coupler	×		×	×	x	×
Cavity pickup probe cabling drift measure ments		×	×	×	×	
Test of actual pickup probe				×	×	×
Cavity mic rophonics and Lorentz transfer function				x	x	×
Cavity impedance test (low power, test imped., at select freq)						
Cavity impedance test (w/beam, beamstability,namrowband, broadband)						
Cavity high power dampentest (test of props, mech. Issues)						
Impedance budget (cavities, taper transitions, belows)						
Cavity damper design	×			×	×	×
Cavity damper test w/beam (multipact., namrowband, broadband loading					x	х
Cavity impedance effects (damper performance)					×	×
Cold mass checkout					×	×
Cavity alignment scheme checkout				×	×	×
Cavity electrical center	×					
Cryomodule static heat loads				x	x	×
Cavity multipacting		×	×	×	x	×
Cavity quent hileve b		×	×	×	×	×
Cavity multpacting with beam					x	×
Cavity quent hileve is with beam					×	×
Klystron phase noise measurements	x	×	×	×	×	×
Will the SRF cavity meet operating gradientspec ?				×	×	×
Will the cavity/cryomodule meet microphonics spec ?				×	×	×
What is the ground vibration spectrum in Sector 6 and 8 ?	×	×	×	×	×	×
How do ground vibrations couple to the cavity microphonics ?			×	×	×	×
Is active microphonics suppression necessary to meet the RF system performance			×	×	×	×
specification ?						^
Can 0.03deg rms differential phase stability be achieved with an S-band SRF system			×	×		
without beam loading?			^	^		
Can 0.03deg rms differential phase stability be achieved with an S-band SRF system						
under beam loading ?					×	×
(i.e. 2 cavity, 1 sector test, can chirp be held to zero?)						
Development of SRF cavity control algorithms	x		×	x	x	×
Development of LLRF cable calibrations chemes	x		×	x	x	x
Development of RF system beam-based calibrationschemes	x					
Cavity tuner system de velopment	×					
Cavity mic rophonics suppression	×	×	×	×	×	×
Full-power test of Mystron, characterize for rf gain,eff., p/a modulation sensitivity to		×	×	×	×	×
HVPS ripple, collector full beam test	×					
Characterize phase stability of WG components	×				×	×
Test circulator and load at full power/full reflection	×					
Test WG shutters at full power and certify PPS	×					
Test and characterization of high power I/O moulator	×					
Development and te of fast if interior ksystem	×					
Beam Diagnostics					×	×
To what extent can the real-time orbit feedback system relax the medium to long-		l				×
term phase stability spec?						
Timing and reference distribution System		l			×	×

Agenda

Tuesday, July 27 – A1100

8:45 AM - 8:50 AM	Welcome	Zholents
8:50 AM - 9:00 AM	APS-U - Accelerator systems	Borland
9:00 AM - 9:15 AM	SPX Project Overview	Nassiri
9:15AM-9:45 AM	Constraints, performance requirements, and tolerances	Sajaev
9:45 -10:15 AM	Collective effects – multi-bunch stability	Harkay
10:15AM - 10:30 AM	Coffee break	
10:30AM - 11:15 AM	SPX deflecting cavities	Waldschmidt
11:15AM - 11:35 AM	Cryomodule concepts and cryogenics	Fuerst
11:35 AM-12:15 PM	Discussion	
12:15 PM - 1:30 PM	No-host lunch	
1:30 PM - 2:00 PM	LLRF concept	Berenc
2:00PM - 2:20PM	RF source and rf power distribution scheme	Horan
2:20 PM - 2:50 PM	Timing and synchronization	Lenkszus
2:50 PM - 3:20 PM	Beam diagnostics	Yang
3:20 PM - 3:30 PM	Coffee break	

Agenda - 2

Wednesday, July 28

9:00 AM - 10:30 AM

10:30 AM - 10:45 AM

10:45 AM - 12:15 PM

12:15 -1:45 PM

1:45 PM - 3:15 PM

3:15 PM - 3:30 PM

3:30 PM - 5:30 PM

7:00 PM

Thursday, July 29

9:00 AM - 10:30 AM

10:30 AM - 10:45 AM

10:45AM - 12:30 PM

12:30PM -1:30 PM

1:30 PM - 2:30 PM

2:30 PM

WG summary reports and discussion

Coffee break

Working groups

Lunch

Working groups

Coffee break

Working groups

No-host dinner

WG summary reports and discussion

Coffee break

Discussion

No-host lunch

Discussion and summary

Meeting adjourned

Agenda - 3

Working Groups

WG1: Cavity/Cryomodule/Cryogenics/HLRF - A1100 Coordinators: Rimmer, Waldschmidt, Mammosser

WG2: LLRF/Timing-Synchronization/Diagnostics & Controls - B3100A&B Coordinators: Doolittle, Berenc, Byrd

Additional discussion topics if time permits:

- 1) Partially driving the cavities with beam
- 2) Ideas on system commissioning

Study Group Goals

- Focus entirely on the SPX technical goals.
- Study and evaluate feasibility of proposed solutions based on beam physics requirements imposed by the APS storage ring operation.
- Identify high-risk technical activities and suggest means of mitigating those risks.
 - Design modifications and/or alternative solutions
- Identify and discuss key R&D elements in each technical system that are necessary for proof-of-the-concept demonstration.
- Study and evaluate design and performance of each system. Highlight engineering design weaknesses that need improvements/modifications to be realizable and cost effective.
- To what degree, if any, can the physics specifications be somewhat relaxed to ease the tolerances on the technical systems? Can design deliver technical performance?
- Are there any potential show stoppers?

